## NOAA Technical Report NMFS CIRC-382

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Marine Fisheries Service

```
Marne Blologicel Laboratory
LIDRARY
                                    AUO 1 31972
```



## Fishery Publications, Calendar Year 1966: Lists and Indexes

MARY ELLEN ENGETT and LEE C. THORSON

## National Marine Fisheries Service, Circulars

The major responsibilitics of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyses, and publishes statistics on various phases of the industry.

The NOAA Technical Report NMFS CIRC series continues a series that has been in existence since 1941. The Circulars are technical publications of general interest intended to aid conservation and management. Publications that review in considerable detail and at a high technical level certain broad areas of rescarch appear in this series. Technical papers originating in economics studies and from management investigations appear in the Circular series.

NOAA Technical Reports NMFS CIRC are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. Individual copies may be obtained (unless otherwise noted) from NOAA Publications Section, Rockville, Md. 20852. Recent Circulars are:
315. Synopsis of biological data on the chum salmon, Oncorhynchus keto (Walbaum) 1792. By Richard G. Bakkala. March 1970, iii +89 pp., 15 figs., 51 tables.
319. Bureau of Commercial Fisheries Great Lakes Fishery Laboratory, Ann Arbor, Michigan. By Bureau of Commercial Fisheries. March 1970, 8 pp., 7 figs.
330. EASTROPAC Atlas: Vols. 4, 2. Catalog No. I 49.4:330/(vol.) 11 vols. ( $\$ 4.75$ each). Available from the Superintendent of Documents, Washington, D.C. 20402.
331. Guidelines for the processing of hot-smoked chub. By H. L. Seagran, J. T. Graikoski, and J. A. Emerson. January 1970, iv +23 pp., 8 figs., 2 tables.
332. Pacific hake. (12 articles by 20 authors.) March 1970 , iii +152 pp., 72 figs., 47 tables.
333. Recommended practices for vessel sanitation and fish handling. By Edgar W. Bowman and Alfred Larsen. March 1970, iv +27 pp., 6 figs.
335. Progress report of the Bureau of Commercial Fisherics Center for Estuarine and Menhaden Research, Pesticide Field Station, Gulf Breeze, Fla., fiscal year 1969. By the Laboratory staff. August 1970, iii +33 pp., 29 figs., 12 tables.
336. The northern fur seal. By Ralph C. Baker, Ford Wilke, and C. Howard Baltzo. April 1970, iii + 19 pp., 13 figs.
337. Program of Division of Economic Rescarch, Burcau of Commerecial Fisheries, fiscal ycar 1969. By Division of Economic Research. April 1970, iii +29 pp., 12 figs., 7 tables.
338. Bureau of Commercial Fisheries Biological Laboratory, Auke Bay, Alaska. By Bureau of Commercial Fisheries. June 1970, 8 pp., 6 figs.
339. Salmon research at Ice Harbor Dam. By Wesley J. Ebel. April 1970, 6 pp., 4 figs.
340. Bureau of Commercial Fisheries Technological Laboratory, Gloucester, Massachusetts. By Bureau of Commercial Fisheries. June 1970, 8 pp ., 8 figs.
341. Report of the Bureau of Commercial Fisheries Biological Laboratory, Beaufort, N.C., for the fiscal year ending June 30, 1968. By the Laboratory staff. August 1970, iii +24 pp., 11 figs., 16 tables.
342. Report of the Bureau of Commercial Fisheries Biological Laboratory, St. Petersburg Beach, Florida, fiscal year 1969. By the Laboratory staff. August 1970, iii +22 pp., 20 figs., 8 tables.
343. Report of the Rureau of Commercial Fisheries Biological Laboratory, Galveston, Texas, fiscal year 1969. By the Laboratory staff. August 1970, iii +39 pp., 28 figs., 9 tables.
344. Bureau of Commercial Fisheries Tropical Atlantic Biological Laboratory progress in research 1965-69, Miami, Florida. By Ann Weeks. October 1970, iv $+65 \mathrm{pp} ., 53$ figs.
346. Sportsman's guide to handling, smoking, and preserving Great Lakes coho salmon. By Shearon Dudley, J. T. Graikoski, H. L. Seagran, and Paul M. Earl. September 1970, iii +28 pp., 15 figs.
347. Synopsis of biological data on Pacific ocean perch, Sebastodes alutus. By Richard L. Major and Herbert H. Shippen. December 1970, iii +38 pp., 31 figs., 11 tables.

# NOAA Technical Report NMFS CIRC-382 

# Fishery Publications, Calendar Year 1966: Lists and Indexes 

mary ellen engett and LEE C. THORSON

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to N゙MFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that N.llFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

## CONTENTS

Page
ABSTRACT ..... 1
INTRODUCTION ..... 1
LISTS ..... 1
Circular ..... 1
Data Report ..... 3
Fishery Industrial Research ..... 4
Fishery Leaflet ..... 5
Special Scientific Report-Fisheries ..... 6
AUTHOR INDEX ..... 10
SUBJECT INDEX ..... 11
INDEX BY MARSDEN SQUARES ..... 18


# FISHERY PUBLICATIONS, CALENDAR YEAR 1966: LISTS AND INDEXES 

By<br>MARY ELLEN ENGETT and LEE C. THORSON


#### Abstract

The following series of fishery publications of the National Marine Fisheries Service, National Oceanic and Atmospheric Administration (until October, 1970 the Bureau of Commercial Fisheries of the U.S. Fish and Wildlife Service) in calendar year 1966 are listed numerically (with abstracts) and indexed by author, subject, and geographic area: Circular, Data Report, Fishery Industrial Research, Fishery Leaflet, and Special Scientific Report-Fisheries.


## INTRODUCTION

This document provides for calendar year 1966 numerical lists (with abstracts) and indexes by author, subject, and geographical area, the following series of publications of the National Marine Fisheries Service, National Oceanic and Atmospheric Administration, which until October 1970 was the Burean of Commercial Fisheries of the U.S. Fish and Wildlife Service:

## Circular

Data Report
Fishery Industrial Research
Fishery Leaflet
Special Scientific Report-Fisheries
The document is divided into four principal sections:

Numerical listing of series (with abstracts) Author index
Subject index
Index by Marsden squares
The last section has been included to afford easy access to the publications for those persons interested in specific geographical areas. Figure 1 shows the Marsden squares treated in the several publications.

The series abbreviations used in the indexes are:

| Circular | C |
| :--- | ---: |
| Data Report | D |
| Fishery Industrial Research | FIR |
| Fishery Leaflet | FL |
| Special Scientific Report-Fisheries | S |

## LISTS

## Circular

236. Annual report exploratory fishing and gear research Bureau of Commercial Fisheries Region 2 for fiscal year 1964. By Harvey R. Bullis, Jr., and John R. Thompson. January 1966, iv +57 pp., 35 figs., 13 tables, 1 app. (No abstract.)
237. Commercial clams of the North American Pacific coast. By Murray H. Amos. April 1966, iii +18 pp., 10 figs.

> (No abstract.)
238. Shark fishing gear: A historical review. By Mary Hayes Wagner. January 1966, iii + 14 pp., 9 figs., 1 table.
(No abstract.)
239. Report of the Bureau of Commercial Fisheries Biological Station. St. Petersburg Beach, Florida fiscal years 1962-64. By James E. Sykes. April 1966, 26 pp., 21 figs. (No abstract.)
240. Annual report of the Bureal of Commercial Fisheries Biological Laboratory Beaufort, N.C. for the fiscal year ending June 30, 1965. By Kenneth A. Henry. March 1966, iv +39 pp., 22 figs., 10 tables. (No abstract.)
241. Annual report of the Bureau of Commercial Fisheries Technological Laboratory. Gloucester, Mass. for the fiscal year ending June 30, 1964. By Joseph IV. Slavin. May 1966, iii +31 pp., 16 figs., 10 tables.
(No abstract.)
242. Report of the Bureau of Commercial Fisheries Biological Station. St. Petersburg Beach, Florida fiscal year 1965. By James E. Sykes. April 1966, iv +30 pp., 18 figs., 7 tables.
(No abstract.)
243. Progress in 1964-65 at the Bureau of Commercial Fisheries Biological Laboratory, Honolulu. By Thomas A. Manar. February 1966, 42 pp., 27 figs.

## ABSTRACT

This report deals with research results achieved by the Bureau of Commercial Fisheries Biological Laboratory in Honolulu from January 1, 1964, to June 30, 1965. Described are developments in the following fields: the sensory capacities of tunas; tuna behavior; subpopulations research using genetic techniques; studies of the ecology of the skipjack tuna and the albacore tuna; hiological surveys of the Indian Ocean; investigations of the oceanography of the Hawaiian Islands arca and of the entire Pacific; and studies devoted to the evaluation of the use of a submarine for research in fisheries and oceanography. Publications issued or in press during the period are listed.
244. Annual report of the Bureau of Commercial Fisheries Radiobiological Laboratory Beaufort, N.C. for the fiscal year ending June 30, 1965. By T. R. Rice. July 1966, iii + 50 pp., 24 figs., 21 tables.
(No abstract.)
245. Field guide to the Symodontidae (Lizardfishes) of the western Atlantic Ocean. By

William W. Anderson, Jack W. Gehringer, and Frederick H. Berry. May 1966, 12 pp., 25 figs. ABSTRACT
Illustrated keys, designed primarily for use in the field, are presented for the 3 genera and 10 species of lizardfishes, family Synodontidae, occurring in the western Atlantic Ocean.
246. Annual report of the Bureau of Commercial Fisheries Biological Laboratory, Galveston, Texas fiscal year 1965. By Milton J. Lindner and Joseph H. Kutkuhn. June 1966, iv +51 pp., 46 figs., 11 tables.

ABSTRACT
The program of the laboratory in Galveston involves fisherics biology and oceanography research of the commercial fishery resources in the Gulf of Mexico. Particular emphasis is on shrimp research.
247. Annual report of the Bureau of Commercial Fisheries Biological Laboratory, Gulf Breeze, Florida for the fiscal year ending June 30, 1965. By Philip A. Butler. May 1966, iii +15 pp.. 6 figs., 2 tables.
(No abstract.)
248. An economic study of the Boston largetrawler labor force. By Virgil J. Norton and Morton M. Miller. May 1966, iii + 54 pp., 6 figs.. 11 tables, 49 app tables.
(No abstract.)
249. Annual report exploratory fishing and gear research Bureat of Commercial Fisheries Region 2 for fiscal year 1965, By Harvey R. Bullis. Jr., and John R. Thompson. October 1966, iii +33 pp.. 44 figs.
(No abstract.)
250. North American fishery potential. By P. A. Larkin. September 1966, pp. 1-4. 2 figs. (No abstract.)
(250.) Are our fishery resources being properly developed and managed? By J. L. Kask. September 1966, pp. 5-7, 1 fig.
(No abstract.)
(250.) Politics and the marine fisheries. By Wilbert McLeod Chapman. September 1966. pp. 8-16, 4 figs.
(No ahstract.)
(250.) Oceanography and the marine fisheries. By Milner B. Schaefer. September 1966. pp.

17-27, 19 figs.
(No abstract.)
(250.) The future of fish harvesting. By Basil A. Parkes. September 1966, pp. 28-33, 6 figs. (No abstract.)
(250.) Processing-Tomorrow. By E. Robert Kinney. September 1966, pp. 34-36, 2 figs.
(No abstract.)
(250.) A panel considers: "Sell up to higher profits". By Arthur H. Frohman, John Mehos, Eric Turnill, and Dr. Wendell Earle. September 1966, pp. 37-44, 6 figs.
(No abstract.)
(250.) All the world's a market. By Hon. Mitchell Sharp. September 1966, pp. 45-48. 3 figs.
(No abstract.)
(250.) World demand complicates conservation. By Hon. H. J. Robichaud. September 1966, pp. 49-51, 3 figs.
(No abstract.)
(250.) Mexico's fishing industry. By Lic. Jorge Echaniz R. September 1966, pp. 52-55, 3 figs.
(No abstract.)
(250.) World markets and demands. By Stewart L. Udall. September 1966, pp. 56-58.
(No abstract.)
(250.) The role of FAO in world fisheries. By Roy I. Jackson. September 1966, pp. 59-62, 1 fig.
(No abstract.)
(250.) The future of North American fisheries. By Donald L. MicKernan. September 1966, pp. 63-72, 5 figs.
(No abstract.)
251. Amnual report, Bureau of Commercial Fisheries Technological Laboratory, Pascagoula. Mississippi fiscal year 1965. By Travis D. Love and Mary H. Thompson. November 1966, iv +25 pp., 21 figs., 7 tables.
(No abstract.)
252. Published in 1967.
253. Ornamental use of starfishes. By Haskell S. Tubiash. December 1966, 3 pp., 2 figs.
(No abstract.)

## Data Report

10. Oceanographic obscrvations, 1963, east coast of the United States. By Joseph Chasc. March 1966, 173 pp . on 3 microfiche.

## ABSTRACT

Daily water temperature and salinity observations for 1963 from 15 locations along the Atlantic seaboard are tabulated, plotted, and discussed.
11. Releases and recoveries of marked pink shrimp, Penaeus duorarum Burkenroad, in south Florida waters. 1958-64. By Donald M. Allen and T. J. Costello. March 1966, 77 pp. on 2 microfiche.

ABSTRACT
In 17 experiments in south Florida waters, pink shrimp were captured, stain-marked, released, and recaptured during the period 1958-64. This report contains data concerning place and date of release and recapture of shrimp, number, size, and sex of shrimp, and the stains used.
12. Oceanographic observations south of Adak Island, summer 1963. By Craig Van Dyke. May $1966,56 \mathrm{pp}$. on 1 microfiche.

## ABSTRACT

Temperature and salinity data to a depth of 1,050 m . were obtained at 44 stations between Adak Island and lat. $50^{\circ} \mathrm{N}$., from July to September 11, 1963, aboard the RV George B. Kelez. Tabulations of observed and interpolated data, as well as values of sigma-T and dynamic height anomaly, are presented.
13. Oceanographic observations of Tampa Bay, Charlotte Harbor, Pine Island Sound, Florida, and adjacent waters of the Gulf of Mexico, February 1964 through February 1965. By A. Dragovich, J. A. Kelly, Jr., and J. H. Finucane. August 1966, 73 pp. on 2 microfiche.

ABSTRACT
Oceanographic data are presented, and the methods of collection and analysis of samples are described. Determinations of water temperature, salinity, inorganic phosphate-phosphorus, dissolved oxygen, pH , iron, chlorophyll A , light transmission, ultraviolet absorption, cloud cover, cloud type, wind velocity, sea state, and sea direction are recorded. These data were collected as a part of continuing studies on the ecology of estuaries and the Florida red-tide organism (Gymnodinium breve).
14. Hydrographic observations in Tampa Bay, Florida, and the adjacent Gulf of Mexico1963. By John H. Finucane and Alexander Dragovich. September 1966, 83 pp . on 2 microfiche.

ABSTRACT
Hydrographic and primary-productivity data are presented for Tampa Bay, Fla., and the adjacent Gulf of Mexico for 1963. Observations include tide stage, water temperature, salinity, total and inorganic phosphate-phosphorus, total soluble nitrogen, dissolved oxygen, pH , light transmission, water color, cloud cover, cloud type, visibility, wind velocity, wind direction, and sea state. Values for chlorophyll, ultraviolet absorption, and primary production also are given. These data were collected during field operations in estuarine studies of the eastern Gulf of Mexico.

## Fishery Industrial Research

Vol. 3, No. 2. Proximate composition of Lake Michigan alewife (Alosa pseudoharengus). By Donald R. Travis. July 1966, pp. 1-4, 4 figs., 3 tables.

## ABSTRACT

The concentration of nitrogen, oil, ash, and moisture in alewives caught in Lake Michigan was determined on 6 bimonthly samples. The proximate composition and physical measurements are reported for the whole fish.

Vol. 3. No. 2. Accumulation of organic acids during cold storage of shucked soft clams, Mya arenaria (L.), in relation to quality. By Baruch Rosen. July 1966, pp. 5-11, 7 figs. ABSTRACT
During the cold storage of soft clams in plug-top metal cans, the content of glycogen decreased; that of glucose at first increased and then stabilized; that of lactic acid increased continuously; and that of acetic, propionic, and pyruvic acids increased at diminishing rates. The bacterial count increased at an exponential rate. Except in the cases of extreme freshness and extreme spoilage, organoleptic quality was related neither to the chemical changes nor to the bacterial count.

Vol. 3, No. 2. Value of menhaden fish meal as a protein supplement to cottonseed meal-corn diets fed to rats. By Robert R. Kifer, Edgar P. Young, and Kam C. Leong. July 1966, pp. 13-15, 3 tables.

## ABSTRACT

Menhaden fish meal was evaluated as a protein supplement to cottonseed meal-corn diets by means of a rat-feeding study. Rats were randomly allotted
to 9 treatment groups and fed diets containing cottonseed meal-corn with 0 -, 2 -, or 4 -percent levels of fish-meal protein, at $16-, 15$-, or 14 -percent levels of total protein. A significant improvement in rates of gain and utilization of feed resulted from supplementation by the menhaden fish meal. These differences in growth response and utilization of feed were not significantly related to the $16-, 15$-, or 14 percent dietary levels of protein.

Vol. 3, No. 2. Value of menhaden fish meal as a protein supplement to meat-and-bone mealcorn diets fed to rats. By Robert R. Kifer, Edgar P. Young, and Kam C. Leong. July 1966. pp. 17-24, 9 figs., 6 tables.

ABSTRACT
To evaluate menhaden fish meal as a protein supplement to meat-and-bone meal-corn diets, we allotted rats randomly to 9 treatment groups and fed them diets containing meat-and-bone meal-corn, with 0,2 , and 4 percent fish meal protein, at $16-, 15-$, and 14 -percent levels of total protein. Rates of gain and utilization of feed were significantly improved by adding fish meal. The rates of gain and utilization of feed decreased, however, as the dietary levels of protein were lowered, whether fish meal was used as a supplement or not.

Vol. 3. No. 2. Value of menhaden fish meal as a protein supplement in soybean meal-corn diets fed to rats. By Robert R. Kifer, Edgar P. Young, and Kam C. Leong. July 1966, pp. 25-28, 8 tables.

## ABSTRACT

2 consecutive rat-feeding studies were conducted so that menhaden fish meal could be evaluated as a protein supplement in soybean meal-corn diets. Animals weighing $50 \pm 5$ grams were randomly allotted to 5 treatment groups in Experiment 1 and to 9 treatment groups in Experiment II and fed diets containing soybean meal-corn, with and without fish meal, at various levels of total protein (16 and 14 percent in Experiment I and 16, 15, and 14 percent in Experiment II).

In both experiments, response to fish-meal supplementation varied somewhat, as indicated by rates of gain and utilization of feed. It was indicated, however, that fish-meal supplementations in general did not improve the amino acid balance of the soybean meal-corn diets.

Vol. 3, No. 2. Proximate composition of Gulf of Mexico industrial fish. By Mary H. Thompson. July 1966, pp. 29-67, 5 figs., 7 tables, 17 app figs.. 21 app tables, 2 illus.

## ABSTRACT

Variations in physical measurements and proximate composition of 17 Gulf of Mexico industrial fish over several years are delineated on a monthly
basis. Scattered data for several other species are also presented. Analysis of variation in proximate composition and the influence of (1) geographic location of catch, (2) yearly variation, (3) reproductive cycle, (4) scx, (5) food, (6) size, (7) activity, and (8) species are discussed. The fishery is described, and data are given on fluctuations in bottom temperature and types of bottom encountered. Changes in moisture and oil content are shown, and an cquation for estimating the oil content of a lot, composed of mixed species, from its known moisture content is presented. The equation ( $\mathrm{Y}=65.3-$ 0.8 X ) can be used to predict the oil content with a statistically estimated error of $\pm 0.6$ percent oil. A series of actual samples showed the average deviation to be -0.1 percent.

Vol. 3, No. 3. Proximate composition of the Pacific Coast Dungeness crab (Cancer magister). By Robert N. Farragut and Mary H. Thompson December 1966, pp. 1-4, 4 figs., 3 tables. ABSTRACT
The proximate composition of Pacific Coast Dungeness crab is given. Data from 4 samples each of frozen body meat, claw meat, and offal of the Dungeness crab are reported, as is the composition of 2 types of cooked packs from the same lots. Changes in proximate composition resulting from processing are noted.

Vol. 3, No. 3. Microbial analyses of frozen raw breaded shrimp. By Bobby J. Carroll, Travis D. Love, Benjamin Q. Ward, and Melvin E. Waters. December 1966, pp. 5-11, 2 tables. ABSTRACT
164 commercially packed samples of frozen raw breaded shrimp from 14 processing plants were tested for total plate counts, coliforms, Escherichia coli, fecal streptococci, and coagulase-positive staphylococci. The aim of the study was to supply background data on which realistic future bacteriological standards can be based.

Vol. 3, No. 3. Recent technological studies of Dungeness crab processing. Part 4-Preliminary report on salt uptake and heat penetration in whole-cooked crab. By Harold Barnett and Richard W. Nelson. December 1966, pp. 13-16, 3 figs., 1 table.

A study undertaken to show the effect on whole Dungeness crab of varying the concentration of brine in the cook water indicated that salt is absorbed at a faster rate in leg meat than in body meat and that cooking crab in brine causes a slight weight loss.

An evaluation of the rate of penetration of heat in whole crab during brine cooking showed that whole
crabs may sometimes be undercooked at the end of 23 minutes, which is the time normally used in commercial cooking.

Vol. 3, No. 3. Commercial fisheries of the Columbia River and adjacent ocean waters. By A. T. Pruter. December 1966, pp. 17-68, 42 figs., 22 tables.

## ABSTRACT

Fisheries in the Columbia River and the adjacent ocean waters constitute a large and valuable industry with important economic and recreational benefits to people of the Pacific Northwest. Rapidly developing agricultural and manufacturing industries in the Columbia River Basin, however, are placing increasing demands upon the fresh-water environment of resident and anadromous species. The advent of the nuclear age raises the possibility that man may adversely affect the ocean environment also.

This report examines the commercial fisheries in the river and ocean, stressing their importance in the overall development plans for the Columbia River Basin. The fisheries are classified into 3 groups: those for species resident in the Columbia, those for anadromous species, and those for marine species. The fisheries then are described on the basis of individual fish species within each of these groups. The descriptions include information on areas of capture, refcrences to types of harvesting gear, and historical reviews of landings.

## Fishery Leaflet

581. List of fishermen's and fish shore workers' unions in the United States. By Economic Service Section Branch of Foreign Trade and Economic Services. June 1966, 4 pp.
(No abstract.)
582. The bait shrimp industry of the Gulf of Mexico. By Anthony Inglis and Edward Chin. May 1966 , iii +10 pp., 6 figs.
(No abstract.)
583. Plankton. By Louella E. Cable. July 1966, iii +13 pp., 4 figs.
(No abstract.)
584. Marine protein concentrate. By Bureau of Commercial Fisheries Technological Laboratory, College Park, Maryland. April 1966, $\mathrm{v}+27$ pp., 3 figs., 12 tables.

ABSTRACT
General information is given on a method to convert red hake into a high-quality marine protein concentrate for human consumption. Plans, as well
as estimates of processing and product costs, are shown for a proposed commercial process. Data are presented on the physical, chemical, nutritional, bacteriological, and toxicological studies on marine protein coneentrate, produced by a method closely approximating the proposed commercial process.
585. Published in 1967.
586. Commercial flounder gigging. By Hilton M. Floyd. February 1966, iii +5 pp., 6 figs. ABSTRACT
The leaflet describes a commercial method of spearing southern flounder (Paralichthys lethostigma), and the gear used. The essential equipment is a spear and a light.

587-588. Published in 1965.
589. The shrimp and the shrimp fishery of the southern United States. By William W. Anderson. Revised January 1966, 8 pp., 9 figs.
(No abstract.)
590. List of fishery associations in the United States. By Leslie D. McMullin. Revised May 1966, $\mathrm{jv}+6 \mathrm{pp}$.
(No abstract.)
591. Fishery motion pictures.
(No author, no abstract, no date.)
592. The striped bass. By Paul R. Nichols. October 1966, iii +6 pp., 5 figs. (No abstract.)
593. Graduate educational grants, academic year 1967-1968. Anonymous. 5 pp., 5 figs. (No ahstract.)
59). Published in 1967.
595. List of Fishery Leaflets of the U.S. Fish and Wildlife Service. Anonymous. December 1966, 29 pl 3 .
(No abstract.)
596. List of Circulars of the U.S. Fish and Wildlife Service. Anonymous. December 1966, 13 pp .
(No abstract.)
597. List of Fishery Bulletins of the U.S. Fish and Wildlife Service. Anonymous. December 1966, 15 pp .
(No abstract.)
598. List of fishery associations in the United States. By Leslie D. McMullin, Revised December 1966, iii +4 pp .
(No abstract.)
599. List of fishery cooperatives in the United States, 1966-67. By Leslie D, McMullin. Revised October 1966, v + 14 pp .
(No abstract.)

## Special Scientific Report-Fisheries

525. Comparative study of juvenile American shad populations by fin ray and scute counts. By Paul R. Nichols. February 1966, iij + 10 pp., 14 tables.

## ABSTRACT

Forty-five juvenile American shad, Alosa sapidissima (Wilson), collections, from 10 major shad producing rivers along the Atlantic coast of North America, were examined to see if differences in meristic counts suggested evidence of discrete river populations. Four meristic characters-pectoral, dorsal, and anal fin rays and scutes-were used. The difference in the counts between locations and between ソears within rivers was small compared to that between rivers. The differences in counts between rivers indicated that discrete populations of juvenile shad occurred in rivers.
526. Symopsis on the biology of the jack mackerel (Trachurus symmetricus) By John S. MacGregor. April 1966, iii +16 pp., 6 figs., 2 tables.

## ABSTRACT

This synopsis brings together all extant knowledge of the jack mackerel. This knowledge covers nomenclature, taxonomy, morphology, distribution, ecology and life history, population, exploitation, and protection and management.
527. Age and size composition of the menhaden catch along the Atlantic coast of the United States, 1962 with a brief review of the commercial fishery. By William R. Nicholson and Joseph R. Higham, Jr. February 1966, iv + 24 pp.. 6 figs.. 8 tables. 15 app , tables.

## ABSTRACT

The 1962 purse scine catch of Atlantic menhaden, Brevoortin tyranmus, was 600,000 tons in the summer fishery and 29,000 tons in the North Carolina fall fishery: The mean eatch per purse seine set, based on an estimated number of 26,176 sets, was 24 tons. The 1958 year class (age 4) dominated the fishery in the Middle and North Atlantic Areas
for the fourth consecutive year and provided 5 percent of the catch in the Chesapeake Bay Area and 36 percent of the catch in the North Carolina fall fishery. On the basis of its contribution to the fishery in the Chesapeake Bay and Middle Atlantic Areas, the incoming year class (1961) appeared to be less than average in abundance. Except for age-0 fish, the mean lengths and weights in the South Atlantic Area in 1962 were less than the means for the previous 7 -year period. The means for age-4 fish were less than the 7 -year means in the Middle and North Atlantic Areas, but slightly greater in the Chesapeake Bay Area. With few exceptions, the mean lengths and weights of other age groups in the Chesapeake Bay, Middle Atlantic, and North Atlantic Areas were greater than the 7 -ycar means.
528. U.S. Federal research on fisheries and limnology in the Great Lakes through 1964: An annotated bibliography. By Ralph Hile. March 1966, iii +53 ppr.. 2 tables.

## ABSTRACT

The annotated bibliography is preceded by a brief account of the Federal research program in fisheries and limnology in the Great Lakes in 1957-64. The bibliography covers 314 papers by staff members of the Bureau of Commercial Fisheries Biolorical Laboratory in Ann Arbor, Mich., and 35 by associated scientists with whom the Laboratory had contractual or other cooperative arrangements: included also are patents issued to Laboratory personnel. A roster of Laboratory scientists as of December $: 31,1964$, is appended.
529. The Bureau of Commercial Fisheries Type IV electrofishing shocker-Its characteristics and operation. By Beniamin G. Patten and Charles C. Gillaspie. April 1966, iii +15 pp., 10 figs.

## ABSTRACT

A fish shocker which is effective, dependable, light weight, and economical to purchase and operate is described. The output energy of this shocker is 450 volts direct current at 150 milliamperes, pulsed into square waves at frequencies controllable from 20 to 100 per second with a fixed duration of 6 milliseconds.

This output energy produces a good galvanotaxis reaction in fish in the field. Our experimentation and information from the literature indicates the output energy of the described shocker to be of a favorable range.

Methods of operation of electric shockers are given. The recommended sizes of the electrodes are about 40 cm . square for the a node and 2.3 m . square for the cathode. The electrodes should be operated close together, especially in resistive waters. In suitable waters a wading technique is used, but a floating electrofishing operation is necessary if waters are deep or swift.

The effectiveness of a shocker is often reduced by environmental factors, but in most situations little can be done to compensate for this. The effects of water resistivity, variations in fish size or species, temperature, and fish mortality factors are discussed in relation to the success of clectrofishing operations.
530. Seasonal and areal distribution of zooplankton in coastal waters of the Gulf of Maine, 1964. By Kenneth Sherman. May 1966. 11 pp., 10 figs., 1 tables.

ABSTRACT
A description is given of the composition and seasonal variations of zooplankton in coastal waters of the Gulf of Maine during 1964, and comparisons are made between 1963 and 1964. Twelve zooplankton groups (major taxa) were represented in the samples. Five occurred as holoplanktonic forms and seven were meroplanktonic. Copepods were the dominant zooplankters during all seasons. Zooplankton volumes for both years followed similar areal trends. Mean annual volumes were highest in the western area (Cape Ann, Mass., to Cape Elizabeth, Maine) ; moderate in the central area (Cape Elizabeth to Mt. Desert Island, Maine) ; and low in the eastern sector (Mt. Desert Island to Machias Bay, Maine). Zooplankton volumes were generally lower in 1964 than in 1963. Seasonal and annual variations in abundance of zooplankters are discussed in relation to hydrography. Local hydrography appears to influence the abundance and distribution of coastal zooplankters more directly than does the cyclonic-eddy system of the Gulf proper.
531. Length-weight relation of the summer flounder Paralichthys dentatus (Linnaeus). By Fred E. Lux and L. R. Porter, Jr. June 1966, iii +5 pp.. 1 fig., 3 tables, 1 app. table. ABSTRACT
Length-weight equations of the form $W=c L^{b}$ in which $W$ is weight, $L$ is length, and $c$ and $b$ are constants are given for summer flounder for each calendar quarter. Weight for a given length varied seasonally. Males were slightly heavier than females of the same length.
532. Growth and survival of sockeye salmon introduced into Ruth Lake after removal of resident fish populatious. By William R. Meehan. July 1966, iii +18 1pp., 12 figs., 14 tables.

Sockeye salmon (Oncorhynchus nerka) in three lakes on Afognak Island, Alaska, were studied. Ruth Lake was treated with rotenone to remove resident fish. Midarm Lake, which had no salmon, and Little Kitoi Lake, which has a small run of sockeye, were used as controls to compare survival and growth of introduced fry and natural fry with survival and
growth of introduced fry in Ruth Lake. Other factors that might influence sockeye production, such as plankton and bottom fauna, were also considered.

In general, growth and survival of fry and biological productivity were greater in the treated lake. Growth and survival decreased as fry densities increased.
533. Annual fish passage report - Rock Island Dan Columbia River, Washington, 1965. By Paul D. Zimmer and John H. Broughton. October 1966, iii +24 pp.. 3 figs., 21 tables. ABSTRACT
Fish were again counted through the fishways at Rock Island Dam, thus providing counts at this location of the 33d consecutive ycar. Chinook and sockeye counts were down, and coho and steelhead counts were up from 1964. The counts of chinook, coho, and steelhead were larger, and the count of sockeye smaller than their respective averages for 1933-64. The count of salmon and steelhead was exceeded by the count of other species.

Four and one-half percent of the salmon and steelhead passing through the counting gates had injuries.

Daily maximum and minimum water temperatures and daily average rate of stream flow were recorded.
534. Distribution and abundance of sardine and anchory larvae in the California current region off California and Baja California, 195164: A summary. By Elbert H. Ahlstrom. August 1966, iii +71 np., 6 figs., 66 tables.

## ABSTRACT

Data summarized in this report document the nine-fold increase in the anchory population (based on numbers of larvae) between 1951 and 1964, as well as the marked deeline in the distribution and ahundance of sardine larvae. Data for the years 1958-64 are treated in more detail than those for earlier years. Information was obtained on cooperative hydrographic-biological cruises of the California Cooperative Oceanic Fisheries Investigations.
535. Red-tide research summarized to 1964 including an annotated bibliography. By George A. Rounsefell and Walter R. Nelson. December 1966 , iii +85 pp., 8 figs., 4 tables, 1 app table.

## ABSTRACT

This paper summarizes from published and unpublished data and reports the status of research on the Florida red tide up to 1964. It contains 292 references, mostly annotated, on red tide and closely related subjects. The relation of oceanographic conditions to red-tide blooms, the seasonal and coastwise distribution of the Florida red tide, and prog-
ress in various aspects of research are discussed.
536. Fur seal investigations, Pribilof Islands. Alaska, 1965. By Alton Y. Roppel, Ancel M. Johnson, Raymond E. Anas, and Douglas G. Chapman. $v+45$ pp., 14 figs., 21 tab'es, 23 app tables.

## ABSTRACT

The age classification of 40,367 male fur seals (Callorhimus ursinus) killed on the Pribilof Islands in 1965 was: age 2,4 percent; age 3,56 percent; age 4,36 percent; and age 5,4 percent. The ages of 901 male seals were not determined. The peak of the kill occurred 27-31 July. Predicted kills of 3. and 4 -year-old males on St. Paul Island were 33,000 and 16,000 ; actual kills to 9 August were 19,009 and 12,046. All 2 -year-old males available 22-26 July on St. Paul Island were killed to determine if abundance on land at age 2 is related to return of the year class at age 3 . To test the commercial value of their skins, 854 males larger and older in appearance than those normally taken were killed. Harem and idle bulls counted on the Pribilof Islands were 10,470 and 6,729 . Of 10,432 females killed, St. Paul Island contributed 7,530 , and St. George Island, 2,902. Selective killing for young females on St. Paul Island 23-27 August produced 88 percent in ages 2-5; nonselective killing on St. George Island 16-27 August produced 64 percent in ages $2-5$. Sixty-five 3 -year-old females examined were nulliparous; 1 of 514 -year-old females was primiparous and recently post partum. Recoveries of marked seals included 4,947 with tags or checkmarks applied in the year of birth, 238 selected and tagged as yearlings in previous years, and 36 seals tagged by the U.S.S.R. Ten thousand pups were singletagged and checkmarked, and 20,087 were checkmarked onlv; 922 seals were double-tagged as yearlings. Pup mortality on land was 46,308 . On the basis of tag recoveries from males and counts of dead pups, about 560,000 pups were born on the Pribilof Islands in 1961 and 500,000 in 1962. On the hasis of tag recoveries from females, 344,107 pups were born in 1960, 527,482 in 1961, and 337,012 in 1962. Marked-to-unmarked ratios yielded an estimate of 347.000 pups born on the Prihilof Islands in 1965. From tags recovered in 1965 from seals tagged as yearlings in previous years, we estimated that there were 78,000 yearling males in 1961 and 85,000 in 1962. The average weight of untagged and unmarked seal pups exceeded that of tagged and marked seal pups by 1.14 kg . (males) and 1.04 kg . (females). The predicted kill of male seals on St. Paul Island in 1966 includes 3,000 of ages 2 and $5,26,000$ of age 3 , and 14,000 of age 4. Female seals will not be purposely killed in 1966 .

## 537. Published in 1967.

538. Distribution of spawning pink salmon in Sashin Creek, southeastern Alaska, and sur-
vival of their progeny. By William J. McNeil. September 1966, iii +12 pp., 1 fig., 13 tables. ABSTRACT
The escapement of pink salmon (Oncorhynchus gorbuscha) to Sashin Crcek, southeastern Alaska, in 1963 was 16,757 fish, and fresh-water survival calculated from potential egg deposition and number of outmigrant fry was 20 percent. The spawning ground was divided into three areas-upper, middle, and lower-for the study of density of spawners and survival of progeny. The density of spawners was highest in the middle area. Survival during spawning was low in each area; survival between the end of spawning and the beginning of fry emergence was variable among the three areas; and survival during fry emergence was high in each area. From egg deposition to fry emergence, survival was estimated to be 31 percent in the upper area, 16 percent in the middle area, and 15 percent in the lower area.

Although the upper area was highly productive of pink salmon fry, it has had intensive spawning only in years when the density of spawners was high. When the density was low, spawners tended to concentrate in the lower area. The validity of the supposition that only highly productive spawning heds are used when escapements are small is questioned. The observations at Sashin Creek indicate that relatively large escapements help ensure complete use of productive spawning beds.
539. Tagging summary of American shad, Alose sapidissima (Wilson) and striped bass, Roccus saxatilis (Walbaum), Bureau of Commercial Fisheries Biological Laboratory, Beaufort, N.C., 1950-65. By Paul R. Nichols and Randall P. Cheek. July 1966, 8 pp., 1 fig., 6 tables.


#### Abstract

Number and type of tags applied on American shad, Alosa sapidissima (Wilson), and striped bass, Roccus saxatilis (Walbaum), in 1950-65, are summarized in tahles. A detailed description is given of each type of tag and how it was affixed to the fish. The report also gives the purpose of each tagging study and the status of reports on the findings.


540. Biological oceanography of the eastern tronical Pacific: Summary of existing information. By Maurice Blackburn. November 1966, iii +18 pp., 6 figs.. 2 tables.

## ABSTRACT

Investigations of the biological oceanography of the eastern tropical Pacific are reviewed. Published papers, papers in press, and completed manuscripts, are briefly summarized. On most of the 29 biologi-cal-oceanographic expeditions made since 1952, similar properties were measured by similar methods. Numbers of available comparable measurements
are: standing crop of surface chlorophyll $a, 1,153$; surface primary productivity, 603 ; standing crop of small zooplankton in the upper $300 \mathrm{~m} ., 875$; standing crops of chlorophyll $a$ and micronekton in the upper 100 m ., about 100 each; other types of measurements, small numbers.

The measurements of surface chlorophyll $a$, surface productivity, and zooplankton are analyzed hy 14 areas which are distinguished on the basis of the physical structure of the upper 200 m . and by halfyearly periods irrespective of year. The analysis by arcas shows that all three measurements are highest in upwelling areas (coastal and equatorial) and areas with thin mixed layers, lowest in areas with thick mixed layers (in the suhtropical anticyclonic current gyrals), and intermediate elsewhere. The analysis by periods is partly inconclusive because of the uneven distribution of observations through the year. The most interesting result is the unexpected lack of statistically significant differences between property means for the 2 half-years in some of the areas which are believed (on physical-oceanographic grounds) to be seasonally eutrophic.

The paper also summarizes findings reported elsewhere on changes in biological properties with depth and time of day and on successive days. Past studies on statistical relationships between different properties measured at the same times and places and on the ecology of special groups of organisms (especially chaetognaths, considered as possible "indicators" of water masses or property-distributions) are also summarized briefly. Numerous deficiencies of knowledge are evident; increased research could contribute fundamentally to the much neglected study of biological oceanography in the tropical oceans of the world.
541. Distribution and occurrence of Gymnodinium breve on the west coast of Florida, 196465. By Alexander Dragovich and John A. Kelly, Jr. December 1966, iii +15 pp., 7 figs., 4 tables.

## ABSTRACT

The distribution and monthly occurrence of Gymnodinium breve, the Florida red-tide organism, were determined over a period of 13 months (in 1964-65) in the coastal waters of west Florida. Counts of G. breve varied from 0 to 53,800 cells per liter of water; no fish kills were observed. The organism was present at all stations from 9.3 km . ( 5 miles) to 37.1 km . ( 20 miles) offshore. It was not present in samples from Tampa Bay, and it was found only twice in samples from Charlotte Harbor. The highest occurrence of $G$. breve was in samples taken 27.8 km . ( 15 miles) offshore. Vertical distribution of the species was greatest at the surface and at 5 m . and lowest at 20 m . The largest concentrations of G. breve occurred in September during a period of reduced salinity and temperature. Because these two factors are important to the ecology of the organism, their relation to the presence or absence
of $G$. breve is discussed. G. breve were found within the temperature range $13.8^{\circ}$ to $30.6^{\circ} \mathrm{C}$. It was absent or rare at both the low and high temperatures; cell densities greater than 1,000 per liter were observed from $26.0^{\circ}$ to $27.9^{\circ} \mathrm{C}$. The organism occurred at salinities ranging from 33.68 to 37.07 p.p.t. The highest concentration of cells and incidence was noted within the salinity range 35.00 to 36.90 p.p.t.
542. Some effects of DDT on the ecology of salmon streams in southeastern Alaska. By Roger J. Reed. November 1966, iii +15 pp ., 7 figs., 9 tables.


#### Abstract

The effects on stream-dwelling fish and insects of an aerial application of DDT ( 0.28 kg . (kilogram) per hectare or one-fourth pound per acre) to control blackheaded budworm were studied in four streams in southeastern Alaska.

Prespray and postspray sampling was done to determine the food eaten by rainbow and eutthroat trout, the coefficient of condition of trout, the abundance of insects on stones in the stream, the numbers of drifting insects, and the concentrations of DDT in the water, fish, clams, and plankton.

The effects of the DDT were an immerliate marked increase in the number of aquatic insects drifting in the stream the day of spraying and the ammihilation of aquatic insects within 3 days . No fish were obscrved to be harmed, although the concentrations of DDT and DDE (hiological derivative of DDT) in their bodies increased. The concentrations of DDT also increased in stream waters, plankton, and clams. The one known long-term effect of the DDT on trout was a decline in their condition factor, apparently due to the reduction in their food supply.

The stream insects slowly began to reappear a few weeks after the spraying but did not approach normal numbers until the following summer.


## AUTHOR INDEX

Ahlstrom, Elbert H., S 534
Allen, Donald M., and T. J. Costello, D 11
Amos, Murray H., C 237
Anas, Raymond E.-see Roppel et al.
Anderson, William W., FL 589
Anderson, William W., Jack W. Gehringer, and Froderick H. Berry, C 245

Anonymous, C 250, FL 581, FL 584, Fl, 591, FL 593, FL 595, FL 596, FL 597

Barnett, Harold, and Richard W. Nelson, FIR v. 3, p. 13

Berry, Frederick H.-see Anderson et al.
Blackburn, Maurice, S 540
Broughton, John H.-see Zimmer and Broughton
Bullis, Harvey R., Jr., and John R. Thompson, C 236, C 249

Butler, Philip A., C 247
Cable, Louella E., FL 583
Carroll, Bobby J., Travis D. Love, Benjamin Q. Ward, and Melvin E. Waters, FIR v. 3, p. 5

Chapman, Douglas G.-see Roppel et al.
Chapman, Wilbert McLeod, C 250
Chase, Joseph, D 10
Cheek, Randall P.-see Nichols and Cheek
Chin, Edward-see Inglis and Chin
Costello, T. J.-see Allen and Costello
Dragovich, Alexander-sec Finueane and Dragovich
Dragovich, Alexander, and John A. Kelly, Jr., S 541
Dragovich, A., J. A. Kelly, Jr., and J. H. Finucane, D 13
Earle, Wendell-see Frohman et al.
Echaniz, R., Jorge, C 250
Farragut, Robert N., and Mary N. Thompson, FIR i. 3, p. 1

Finucane, J. H.-see Dragovich et al.

Finucane, John H., and Alexander Dragovich, D 14
Floyd, Hilton M., FL 586

Frohman, Arthur H., John Mehos, Eric Turnill, and Dr. Wendell Earle, C 250

Gehringer, Jack W.-sce Anderson et al.
Gillaspie, Charles C.-see Patten and Gillaspie
Henry, Kenneth A., C 240
Higham, Joseph R., Jr.-see Nicholson and Higham
Hile, Ralph, S 528
Inglis, Anthony, and Edward Chin, FL 582

Jackson, Roy 1., C 250
Johnson, Ancel M.-see Roppel et al.

Kask, J. L., C 250
Kelly, J. A., Jr.-see Dragovich et al.
Kelly, John A., Jr.-see Dragovich and Kelly
Kifer, Robert R., Edgar P. Young, and kam C. Leong, FIR v. 3, p. 13, p. 17 , p. 25

Kinney, E. Robert, C 250
Kutkuhn, Joseph H.-see Lindner and Kutkuhn
Larkin, P. A., C 250
Leong, Ǩam C.-see Kifer et al.
Lindner, Milton J., and Joseph H. Kutkuhn, C 246
Love, Travis D.-see Carroll et al.
Love, Travis D., and Mary H. Thompson, C 251
Lux, Fred E., and L. R. Porter, Jr., S 531
MacGregor, John S., S 526
Manar, Thomas A., C 243
MeKernan, Donald L., C 250
Mc.llullin, Leslie D., FL 590, FL 598, FL 599

McNeil, William J., S 538
Meehan, William R., S 532
Mehos, John-see Frohman et al.
Miller, Morton M.-see Norton and Miller
Nelson, Richard W.-see Barnett and Nelson
Nelson, Walter R.-see Rounsefell and Nelson
Nichols, Paul R., FL 592, S 525
Nichols, Paul R., and Randall P. Cheek, S 539
Nicholson, William R., and Joseph R. Higham, Jr., S 527
Norton, Virgil J., and Morton M. Niller, C 248
Parkes, Basil A., C 250
Patten, Benjamin G., and Charles C. Gillaspie, S 529
Porter, L. R., Jr.-see Lux and Porter

Pruter, A. T., FIR v. 3, p. 17
Reed, Roger J., S 542
Rice, 'T'. R., C 244
Robichaud, H. J., C 250
Roppei, Alton Y., Ancel M. Johnson, Raymond E. Anas, and Douglas G. Chapman, S 536

Rosen, Baruch, FIR v. 3, p. 5
Rounsefell, George A., and Walter R. Nelson, S 535
Schaefer, Milner B., C 250
Sharp, Aitchell, C 250
Sherman, Kenneth, S 530
Slavin, Joseph W., C 241
Sykes, James E., C 239, C 242
Thompson, John R.-see Builis and Thompson
Thompson, Mary H., FIR v. 3, p. 29
----see Farragut and Thompson
----see Love and Thompson
Travis, Donald R., FIR v. 3, p. 1
Tubiash, Haskell S., C 253
Turnill, Eric-see Frohman et al.
Udall, Stewart L., C 250
Van Dyke, Craig, D 12
Wagner, Mary Hayes, C 238
Ward, Benjamin Q.-see Carroll et al.
Waters, Melvin E.-see Carroll et al.

Young, Edgar P.--see Kifer et al.
Zimmer, Paul D., and John H. Broughton, S 533

## SUBJECT INDEX

[^0]Afognak Island, Alaska, S 532
Alexander Agassiz-see Vessels
Alaska-see Vessels

## Alaska

Adak Island, D 12
Afognak Island, S 532
Little Kitoi Lake, S 532
Nidarm Lake, S 532
Pribilof Islands, S 536
Ruth Lake, S 532
Sashin Creek, S 538
Allatross 1 V -see Vessels
Alewife
proximate composition of Lake Michigan ash, FIR v. 3 no. 2, p. 2 moisture, FIR v. 3 no. 2, p. 2 nitrogen, FIR v. 3 nо. 2, п. 2 oil, FIR v. 3 по. 2, p. 2 possible causes of seasonal variations, FIR v. 3 no. 2, p. 3

Alosa sapidissima-see American shad
Aluminaut-see Vessels
Aluin-see Vessels

American shad
comparative study of juveniles by fin
ray and scute counts, S 525
tagging summary, 1950-65
Beaufort, North Carolina, S 539
Asherah-see Vessels
Atlantic coast rivers
comparative study of juvenile American shad populations by fin ray and scute counts, S 525

Atlantic menhaden
age and composition
age, S 527
length, S 527
mean lengths and weights, S 527
weight, S 527
commercial fishery, 1962
Chesapeake Bay, S 527
distribution of purse seine sets, S 527
Middle Atlantic, S 527
North Atlantic, S 527
North Carolina fall fishery, S 527
South Atlantic, S 527
Baird-see Vessels
Bass-see Striped bass
Beaufort, North Carolina, C 240, C 244, S 539

Black Douglas-see Vessels

Boston, Massachusetts, C 248
Boston Phantom—see Vessels

Boston Wayfarer-see Vessels

George M. Bowers-see Vessels

Brevoortia tyranmus-see Menhaden
Anton Brum-see Vessels

Bureau of Commercial Fisheries
Reaufort, N.C. Biological Laboratory annual report for fiseal year ending June 30, 1965, C 240
tagging summary of American shad and striped bass, 1950-65, S 539
Beaufort, N.C. Radiobiologieal Laboratory annual report for fiscal year ending June 30, 1965, C 244
fishery motion pictures, FL 590
Galveston, Texas Biological Laboratory
annual report for fiscal year 1965, C 246
Gloucester, Mass. Technological Laboratory annual report for fiseal year ending June 30, 1964, C 241
graduate educational grants, academic year 1967-68, FL 593
Gulf Breeze, Florida Biological Laboratory
annual report for fiseal year ending June 30, 1965, C 247
Honolulu Biological Laboratory progress in 1964-65, C 2.43
list of Circulars of the U.S. Fish and Wildlife Service, FL 596
list of fishermen's and fish shore workers' unions in the United States, FL 581
list of Fishery Bulletins of the U.S. Fish and Wildlife Service, FL 597
list of Fishery Leaflets of the U.S. Fish and Wildlife Service, FL 595
marine protein concentrate general considerations, FL 584
plans for commercial production units, FL 584
preparation of test sample, FL 584
processing costs, FL 584
properties of test sample, FL 584
Pascagoula, Mississippi Technologieal Laboratory annual report for fiscal year 1965, C 251
Region 2 exploratory fishing and gear research annual report for fiscal year 1964, C 236 annual report for fiscal year 1965, C 249
St. Petersburg Beach, Florida Biological Station report for fiscal years $1962-64$, C 239 report for fiscal year 1965 , C 242
the first North American fisheries conference, C 250

Type IV electrofishing shocker
characteristics and effectiveness of energy output, S 529
considerations for electrofishing, S 529
description, S 529
method of operation, S 529
Callorhinus ursinus-see Fur seal
Cancer magister-see Dungeness crab
Carmen-see Vessels
Charlotte Harbor, Florida, D 13, S 541
Chinook salmon
passage over Rock Island Dam-1965, S 533
Cisco—see Vessels
Clams-see Soft clams

## Clams

commercial, North American Pacific coast
anatomic features, C 237
fishery regulations, C 237
habitat, C 237
harvesting, C 237
principal species, C 237
reproduction, C 237
sanitary control, C 237
John N. Cobb-see Vessels
Coho salmon passage over Rock Island Dam-1965, S 533

Columbia River, Washington, S 533
Columbia River
commercial fisheries in, and adjacent ocean anadromous species, FIR v. 3 no. 3, p. 22
bony fishes, FIR v. 3 no. 3, p. 37
elasmobranchs, FIR v. 3 no. 3, p. 51
fresh-water species, FIR v. 3 no. 3, p. 21
mammals, FIR v. 3 no. 3, p. 62
shellifsh, FIR v. 3 no. 3 , p. 54
Combat-see Vessels
Hernan Cortez-see Vessels
Crab-see Dungeness crab
Townsend Cromwell-see Vessels

DDT
effect on salmon streams in southeastern Alaska collection of samples, S 542 evaluation of effects of spraying, S 542 insecticide analyses, S 542 insecticide application, S 542
observations on dates of spraying, S 542
postspray observations, S 542
prespray observations, S 542

[^1]Pacific Area States, FL 590, FL 598
South Atlantic and Gulf States, FL 590, FL 598

## Fishery cooperatives

1966-67
Commonwealth of Puerto Rico, FL 599
Great Lakes and Inland areas, FL 599
Widdle Atlantic coast, FL 599
North Atlantic coast, FL 599
Pacific coast, FL 599
South Atlantic and Gulf coasts, FL 599

Fishery products
"World markets and demands", C 250

Fishery resources
are they being properly developed and managed?, C 250

Fishing industry
Mexico, C 250
Florida
Charlotte Harbor, D 13, S 541
Gulf Breeze, C 247
Pine 1sland Sound, D 13
St. Petersburg Beach, C 239, C 242
Tampa Bay, D 13, D 14, S 541
Flounder-see Southern flounder; Summer flounder

Food and Agricultural Organization role in world fisheries, C 250

Fulmar-see Vessels

Fur seal
Pribilof Islands, Alaska, 1965
behavior, S 536
experimental skins, S 536
female population, $S 536$
male population, S 536
population estimates, S 536
predictions of 1966 kill of males, S 536
pup mortality
pup weights, S 536
radionuclides in seal teeth, S 536
reproduction, S 536
rookery charts, S 536
tag recoveries and tagging, S 536
Galathen-see Vessels
Galveston, Texas, C 246, FL 582
George L.-see Vessels
Geronimo-see Vessels
Charles H. Gilbert-sec Vessels
Gloucester, Massachusctts, C 241

## Great Lakes

fisheries and limnology research patents and patent applications, S 528 publications by scientists associated with Great Lakes Fishery Investigations, S 528 publications by staff members, S 528 research program, 1957-64, S 528

Gulf Brecze, Florida, C 247

Gulf of Mexico
proximate composition of industrial fish industrial fishery, FIR v. 3 no, 2, p. 30 predictability, FIR v. 3 no. 2, p. 43 procedure, FIR v. 3 no. 2, p. 35 variations in the environment, FIR v. 3 no. 2, p. 35 variations in the fish, FIR v. 3 no. 2, p. 39 variations in the season, FIR v. 3 no. 2, p. 40

Gus III-see Vessels
Gymnodinium breve
west coast of Florida, 1964-65
comparison of distribution in 1964-65 with
previously reported, S 541
environmental factors, S 541
geographic distribution, S 541
monthly occurrence, S 541
relation of salinity to occurrence, S 541
relation of temperature to occurrence, S 541
role of land nutrients and precipitation in
distribution of, S 541
vertical distribution, S 541

Haselbech-see Vessels
Hawaii
Honolulu, C 243
Honolulu, Hawaii, C 243
Horizon-see Vessels
Hydrographic observations
west coast of Florida, 1963
chlorophyll, D 14
cloud cover, D 14
cloud type, D 14
dissolved oxygen, D 14
light transmission, D 14
pH, D 14
primary production, D 14
salinity, D 14
sea state, D 14
tide stage, D 14
total and inorganic phosphate-phosphorus, D 14
total soluble nitrogen, D 14
ultraviolet absorption, D 14
visibility, D 14
water color, D 14
water temperature, D 14
wind direction, D 14
wind velocity, D 14

Jack mackerel
bionomics and life history, S 526
distribution, S 526
exploitation, s 526
identity, S 526
population, S 526
protection and management, S 526
David Starr Jordan-see Vessels
Julia B.-see Vessels
George B. K゙clez-see Vessels
Kingfish—see Vessels
Large-trawler labor force

## Boston

auction sale and the lay system, C 248
characteristics of offshore fishermen, C 248
employment and earnings of offshore
fishermen in 1964, C 248
sample survey procedure, C 248
social welfare for fishermen, C 248
Larvae (sardine and anchovy) distribution and abundance in California Current, 1951-64
anchory, S 534
CalCOFI survey cruises 1951-60, S 534
increase in anchovy larvae abundance since 1951, S 534
laboratory procedures, S 534
quarterly survey cruises of 1961-64, S 534
sardine eggs and larvae, S 534
sardine larvae abundance 1951-64, S 534
size composition, S 534
Little Kitoi Lake, Alaska, S 532
Lizardfishes
field guide to, of western Atlantic Ocean
Saurida brasiliensis, C 245
Saurida caribbaca, C 245
Saurida normani, C 245
Saurida suspicio, C 245
Synodus foetens, C 245
Synodus intermedius, C 245
Synodus pocyi, C 245
Synodus saums, C 245
Synodus synodus, C 245
Trachinocephalus myops, C 245
Mackerel-see Jack Mackerel
Marine fisheries and oceanography
fish behaviour in relation to catching operations, C 250
forecasting space and time variations, C 250
jdentification and location of unused resources, C 250
location of new productive fishing areas, C 250 and polities
academic fisheries institutions, C 250
competition with other foods, C 250
inefficient and efficient fishermen, C 250
organization of ocean research, C 250
sportsmen versus commercials, C 250
state fishery research, C 250
state laws, C 250
Massachuscłts-see Vessels

Massachusetts
Boston, C 248
Gloucester, C 241

Menhaden-see Atlantic menhaden

Menhaden
fish meal as protein supplement in rat soybean meal-corn diets
chemical analyses, FIR v. 3 no. 2, p. 26, 28
diets, FIR v. 3 no. 2, p. 26, 27
effect on growth and utilization of feed,
FIR v. 3 no. 2, p. 26, 28
rats, FIR v. 3 no. 2, p. 26, 27
samples, FIR v. 3 no. 2, p. 26, 27
fish meal as protein supplement to rat cottonseed meal-corn diets
diets, FIR v. 3 no. 2, p. 13
effect on growth and utilization of feed,
FIR v. 3 no. 2, p. 14
rats, FIR v. 3 no. 2, p. 14
samples, FIR v. 3 no. 2, p. 13
fish meal as protein supplement to rat meat-andbone meal-corn diets
analyses, FIR v. 3 no. 2, p. 18
chemical analysis, FIR v. 3 no. 2, p. 19
effect on rate of gain and utilization of
feed, FIR v. 3 no. 2, p. 19
rats, FIR v. 3 no. 2, p. 18
samples, FIR v. 3 no. 2, p. 17
Mexico
fishing industry, C 250
Midarm Lake, Alaska, S 532

Mississippi
Pascagoula, C 249, C 251
Musky-see Vessels
Musky II-see Vessels
Mya arenaria-see Soft clams

Noutilus-see Vessels

Nenиє-see Vessels

North America
fishery potential, C 250
future of its fisheries, C 250
North Carolina
Beaufort, C 240, C 244, S 539
Oceanographic observations east coast of U.S., 1963

Ambrose Channel Lightship, D 10
Barnegat Lightship, D 10
Boston Lightship, D 10
bottom temperature, D 10
Buzzards Bay Entrance Light Station, D 10
Chesapeake Lightship, D 10
Delaware Lightship, D 10
Diamond Shoal Lightship, D 10
Five Fathom Banks Lightship, D 10
Frying Pan Shoals Lightship, D 10
Mlt. Desert Rock Light Station, D 10
Nantucket Shoals Lightship, D 10
Portland Lightship, D 10
Saunderstown, R.I., D 10
Savannah Lightship, D 10
surface temperature, D 10
Woods Hole, Massachusetts, D 10
west coast of Florida, 1964-65
chlorophyll A, D 13
cloud cover, D 13
cloud type, D 13
dissolved oxygen, D 13
inorganic phosphate-phosphorus, D 13
iron, D 13
light transmission, D 13
$\mathrm{pH}, \mathrm{D} 13$
salinity, D 13
sea direction, D 13
sea state, D 13
ultraviolet absorption, D 13
water temperature, D 13
wind velocity, D 13
Oncorhynchus gorbuscha-see Pink salmon
Oncorhynchus kisutch-see Coho salmon
Oncorhymehus nerka-see Sockeye salmon
Oncorhynchus tshauytscha-sec Chinook salmon
Oregon-see Vessels

## Pacific Ocean

biological oceanography of eastern tropical
ecology of special groups of organisms, S 540
horizontal distribution of biological properties, S 540
relationships within and between trophic levels, S 540
seasonal (half-yearly) distribution of biological properties, S 540
special areas, S 540
taxonomic composition of standing crops, S 540
variation in biological properties by times of day, S 540
variation in biological properties on successive days, S 540
vertical distribution of biological properties, S540

```
Paralichthys dentatus-sce Summer flounder
Paralichthys lethostigma-see Southern flounder
Pascagoula, Mississippi, C 249, C 251
Pclican-see Vessels
Penaeus duorarum-see Pink shrimp
Pine Island Sound, Florida, D 13
```


## Pink salmon

```
    releases and recoveries of marked, in south
            Florida waters, 1958-64
                    number, D 11
                    place and date of recapture, D 11
            place and date of release, D 11
            procedure, D 11
            sex, D 11
            size, D 11
            strains used, D 11
    Sashin Creek, Alaska
            density and distribution of deposited eggs, S 538
            distribution of early- and late-spawning females,
                    S 538
            distribution of large and small females, S 538
            number and density of spawners, S 538
            patterns of fresh-water mortality, S }53
            survival of embryos and alevins, S 538
```


## Plankton

classification, FL 583
distribution, FL 583
harmful effects, FL 583
luminescence, FL 583
reproduction, FL 583
survival, FL 583
swarms and blooms, FL 583
uses, FL 583
yield, FL 583
Pompano-see Vessels
Pribilof Islands, Alaska, S 536
Red tide
control of, S 535
field observations on Florida red tide, S 535
general conditions during outbreaks, S 535
historical, S 535
life forms of Gymnodinium breve, S 535
references pertaining to, and related subjects, $S 535$
subject index to selected topics, S 535
suggestions for future research, S 535
Roccus saxatilis-see Striped bass

Rorqual-see Vessels
Ruth Lake, Alaska, S 532
St. Michael-see Vessels
St. Petersburg Beach, Florida, C 239, C 242
Sahmo gairdneri-see Steelhead trout
Salmon-see Chinook salmon; Coho salmon; Pink salmon; Sockeye salmon

Sashin Creek, Alaska, S 538
William Scoresby—see Vessels
E. IV. Scripps-see Vessels

Sealab 11 -see Vessels

Seals-see Fur seal

Shad-see American shad

Shark
fishing gear
anchored bottom lines, C 238
benthic line for deepwater fishing, C 238
floating longlines, C 238
gill nets, C 238
hook and line, C 238

Shoyo Maru-see Vessels

Shrimp-see Pink shrimp

Shrimp
fishery of southern U.S.
iodine shrimp, FL 589
life history of white shrimp, FL 589
methods of capture, FL 589
nutritive value, FL 589
Gulf of Mexico bait industry
Florida, FL 582
Galveston, Texas area, FL 582
general life history, FL 582
kinds of shrimp used, FL 582
publications on shrimp and the bait shrimp industry, FL 582
suggestions for holding live bait shrimp, FL 582
microbial analyses of frozen raw breaded
coagulase-positive staphylococci,
FIR v. 3 no. 3, p. 6
califorms, FIR v. 3 no. 3, p. 6
dilutions, FIR v. 3 no. 3 , p. 6
Escherichia coli, FIR v. 3 no. 3, p. 6
fecal streptococci, FIR v. 3 no. 3, p. 6
samples, FIR v. 3 no. 3, p. 5
total plate counts, FIR v. 3
total plate counts, FIR v. 3 no. 3, p. 6

Silver Bay-see Vessels
Siscou'ct-see Vessels
Skanderborg-sec Vessels
Skipjack-see Vessels
Hugh M. Smith—see Vessels
Sockeye salmon
growth and survival in Ruth Lake
condition, S 532
growth, S 532
migration of smolts, S 532
relation of population density to survival, S 532
survival, S 532
trophic conditions, S 532
passage over Rock Island Dam-1965, S 533
Soft clams
organic acid accumulation during cold storage acquisition, FIR v. 3 no. 2, p. 6 bacteriological study, FIR v. 3 no. 2, p. 8
chemical study, FIR v. 3 no. 2, p. 6
cold storage, FIR v. 3 no. 2, p. 6
organoleptic study, FIR v. 3 no. 2, p. 9
sampling, FIR v. 3 no. 2, p. 6
Southern flounder commercial gigging
electric light, FL 586
gasoline lantern, FL 586
gig, FL 586
methods, FL 586
oil light, FL 586
wood fire, FL 586
Starfishes
ornamental use of, C 253
Steelhead trout
passage over Rock Island Dam-1965, S 533
Striped bass
description, FL 592
economic importance, FL 592
geographic distribution, FL 592
natural history, FL 592
research and management, FL 592
tagging summary, 1950-65
Beaufort, North Carolina, S 539
Summer flounder
length-weight relation
seasonal variations and sex differences, S 531
Swan Island-see Vessels
Tampa Bay, Florida, D 13, D 14, S 541
Texas
Galveston, C 246
Galveston Bay, FL 582

Tom and Al-see Vessels
Trachurus symmetricus-see Jack mackerel

V'essel "V" - see Vessels

Vessels
Alexander Agassiz, S 534
Alaska, S 535
Albatross /V', C 250, FL 593
Ahminaut, C 250, FL 583
Aluin, FL 583
Asherah, C 250
Baird, S 540
Blach Douglas, S 534
Boston Phantom, C 250
Boston Wayfarer, C 250
Ficorge M. Bowers, C 236, C 240, C 249
Anton Bruun, C 243
Carmen, C 249
Cisco, S 528
John N. Cobb, FIR v. 3 no. 3, p. 39
Combat, C 236
Heman Cortez, C 249
Townsend Cromuell, C 243
Deepster, FL 583
Dolphin, C 247
Esmeralda, S 540
D. B. Finn, C 250

Fulmar, S 528
Galathea, S 540
George L., S 528
Geronimo, C 236
Charles H. Gilbert, C 243, S 540
Gus III, C 246
Hazelbech, C 250
Horizon, S 534, S 540
David Starr Jordan, FL 593
Julie B., S 540
George B. Kclez, D 12
Kingfish, C 239, D 13, S 535
Massachusetts, C 248
Musky, S 528
Musky H, S 528
Nautilus, C 243
Nenue, C 243
Oregon, C 236, C 249, C 251, FIR v. 3 no. 2, p. 32, S 535
Pelican, C 236
Pompano, S 535
Rorqual, S 530
St. Michael, C 250
William Scoresby, S 540
E. W'. Scripps, S 534

Sealab 11, C 250
Shoyo Mam, S 540
Silver Bay, C 236, C 249, C 251, FL 589
Siscowet, S 528
Skanderborg, C 250
Skipjuch, C 243
Hugh M. Smith, S 540
Suan Island, C 249

Tom and Al, FIR v. 3 no. 3, p. 63
V'essel " $V^{\text {" ", C }} 236$
l'ityaz, S 540
George Washington, C 243
V'aquina, C 250
Vityaz-see Vessels
George Washington-see Vessels
Washington
Columbia River, S 533
Yaquina-see Vessels
Zooplankton
Gulf of Maine, 1964
abundance, composition, and distribution, S 530
between year comparisons, 1963 and 1964, S 530
zooplankton and hydrography, S 530

## INDEX BY MARSDEN SQUARES

(see figure 1)
008
C 242
C 236
C 246
S 540
009
S 540
010
S 540
011
S 540
012
S 540
013
S 540
043
C 236
044
C 236
045
C 236
S 540
046
S 540
047
S 540
0.48

S 540
0.49

S 540
051
C 243
052
C 243
080
C 236
081
C 236
C 239

C 249
D 11
D 13
D 14
FIR v. 3, p. 32
S 527
S 535
S 540
082
C 236
C 246
FIR v. 3, p. 32
FL 582
083
S 534
S 540
084
S 526
S 53.4
S 540
085
S 526
S 534
S 540 087

C 243
088
C 243
115
S 531
116
C 236
C 240
C 244
D 10

| S 527 | C 241 |  | 12 | 379 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S 531 | C 248 | S | 536 | S | 540 |
| S 539 | D 10 | 307 |  | 380 |  |
| 117 | S 527 |  | 540 | S | 540 |
| C 236 | S 528 | 308 |  | 381 |  |
| C 247 | S 530 | S | 540 | S | 540 |
| C 249 | S 531 | 309 |  | 382 |  |
| C 251 | 15.3 | S | 540 | S | 540 |
| D 10 | FIR v. 3, p. | 310 |  | 383 |  |
| FIR r. 3, p. 32, p. 5 | S 528 |  | 540 | S | 540 |
| S 527 | 154 | 311 |  | 384 |  |
| 120 | S 528 | S | 540 | S | 540 |
| S 526 | 156 | 312 |  | 415 |  |
| S 534 | S 533 | S | 540 | S | 540 |
| S 540 | 157 | 343 |  | 416 |  |
| 121 | FIR v. 3, p. | 7 S | 540 | S | 540 |
| S 526 | S 526 | 344 |  | 417 |  |
| S 534 | S 534 |  | 540 | S | 540 |
| S 540 | 194 | 345 |  | 418 |  |
| 151 | S 538 |  | 540 | S | 540 |
| C 248 | S 542 | 346 |  | 419 |  |
| D 10 | 196 | S | 540 | S | 540 |
| S 527 | S 532 | 347 |  | 420 |  |
| S 530 | 197 | S | 540 | S | 540 |
| S 531 | S 536 | 348 |  |  |  |
| 152 | 198 |  | 540 |  |  |


349. Use of abstracts and summaries as communication devices in technical articles. By F. Bruce Sanford. February 1971, iii +11 pp., 1 fig.
350. Research in fiscal year 1969 at the Bureau of Commercial Fisheries Biological Laboratory, Beaufort, N.C. By the Laboratory staff. November 1970 , ii +49 pp., 21 figs., 17 tables.
351. Bureau of Commercial Fisheries Exploratory Fishing and Gear Research Base, Pascagoula, Mississippi, July 1, 1967 to June 30, 1969. By Harvey R. Bullis, Jr., and John R. Thompson. November 1970 , iv +29 pp., 29 figs., 1 table.
352. Upstream passage of anadromous fish through
navigation locks and use of the stream for spawning and nursery habitat, Cape Fear River, N.C., 1962-66. By Paul R. Nichols and Darrell E. Louder. October 1970 , iv +12 pp., 9 figs., 4 tables.
356. Floating laboratory for study of aquatic organisms and their environment. By George R. Snyder, Theodore H. Blahm, and Robert J. McConnell. Hay 1971, iii +16 pp., 11 figs.
361. Regional and other related aspects of shellfish consumption - some preliminary findings from the 1969 Consumer Panel Survey. By Morton M. Miller and Darrel A. Nash. June 1971, iv + 18 pp., 19 figs., 3 tables, 10 apps.


[^0]:    Adak Island
    oceanographic observations south of, summer 1963
    determination of properties, D 12
    interpolated and computed values, D 12
    ohserved values, D 12
    procedures and methorls, D 12

[^1]:    Deepster-see Vessels
    Dolphin-see Vessels
    Dungeness crab
    proximate composition
    ash, FIR v. 3 no. 3, p. 2
    moisture, FIR v. 3 no. 3, p. 2
    nitrogen, FIR v. 3 no. 3, p. 2
    oil, FIR v. 3 no. 3, p. 2
    sampling method, FIR v. 3 no. 3, p. 1
    salt uptake and heat penetration in whole-cooked
    effect of salt absorption on palatability, FIR v. 3 no. 3, p. 15
    rate of heat penetration into whole crab during brine cooking, FIR v. 3 no. 3 , p. 15
    salt absorption as affected by brine concentration, FIR v. 3 no. 3, p. 14

    Esmeralda-see Vessels
    FAO-see Food and Agricultural Organization
    D. B. Finn-see Vessels

    Fish conservation world demand complicates conservation, C 250

    ## Fish exporting

    Canada"All the world's a market", C 250
    Fish harvesting
    the future, C 250
    Fish passage report
    Rock Island Dam-1965
    chinook jacks, S 533
    chinook salmon, S 533
    coho salmon, S 533
    counting procedures, S 533
    sockeye salmon, S 533
    steelhead trout, S 533
    weather and river discharge data, S 533
    Fish processing
    tomorrow, C 250
    Fish products
    "Sell up to higher profits", C 250
    Fisheries-see Marine fisheries
    Fishery associations
    Great Lakes and Inland Area States, FL 590, FL 598
    Middle Atlantic States, FL 590, FL 598
    New England States, FL 590, FL 598

